/* streflop: STandalone REproducible FLOating-Point Copyright 2006 Nicolas Brodu 2012 Mark Vejvoda Code released according to the GNU Lesser General Public License Heavily relies on GNU Libm, itself depending on netlib fplibm, GNU MP, and IBM MP lib. Uses SoftFloat too. Please read the history and copyright information in the documentation provided with the source code */ /* For reference, the layout of the MXCSR register: FZ:RC:RC:PM:UM:OM:ZM:DM:IM:Rsvd:PE:UE:OE:ZE:DE:IE 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 And the layout of the 387 FPU control word register: Rsvd:Rsvd:Rsvd:X:RC:RC:PC:PC:Rsvd:Rsvd:PM:UM:OM:ZM:DM:IM 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Where: Rsvd - Reserved FZ - Flush to Zero RC - Rounding Control PM - Precision Mask UM - Underflow Mask OM - Overflow Mask ZM - Zerodivide Mask DM - Denormal Mask IM - Invalid Mask PE - Precision Exception UE - Underflow Exception OE - Overflow Exception ZE - Zerodivide Exception DE - Denormal Exception IE - Invalid Exception X - Infinity control (unused on 387 and higher) PC - Precision Control Source: Intel Architecture Software Development Manual, Volume 1, Basic Architecture */ // Included by the main streflop include file // module broken apart for logical code separation #ifndef STREFLOP_FPU_H #define STREFLOP_FPU_H // Can safely make the symbols from softfloat visible to user program, protected in namespace #if defined(STREFLOP_SOFT) #include "softfloat/softfloat.h" #endif namespace streflop { // We do not use libm, so let's copy a few flags and C99 functions // Give warning in case these flags would be defined already, this is indication // of potential confusion! #if defined(FE_INVALID) || defined(FE_DENORMAL) || defined(FE_DIVBYZERO) || defined(FE_OVERFLOW) || defined(FE_UNDERFLOW) || defined(FE_INEXACT) || defined(FE_DOWNWARD) || defined(FE_TONEAREST) || defined(FE_TOWARDZERO) || defined(FE_UPWARD) #warning STREFLOP: FE_XXX flags were already defined and will be redefined! Check you do not use the system libm. #undef FE_INVALID #undef FE_DENORMAL #undef FE_DIVBYZERO #undef FE_OVERFLOW #undef FE_UNDERFLOW #undef FE_INEXACT #undef FE_INEXACT #undef FE_ALL_EXCEPT #undef FE_DOWNWARD #undef FE_TONEAREST #undef FE_TOWARDZERO #undef FE_UPWARD #endif // defined(FE_INVALID) || ... // Flags for FPU exceptions enum FPU_Exceptions { // Invalid operation. If not signaling, gives NaN instead FE_INVALID = 0x0001, #define FE_INVALID FE_INVALID // Extension: for x86 and SSE // Denormal operand. If not signaling, use denormal arithmetic as usual FE_DENORMAL = 0x0002, #define FE_DENORMAL FE_DENORMAL // Division by zero. If not signaling, uses +/- infinity FE_DIVBYZERO = 0x0004, #define FE_DIVBYZERO FE_DIVBYZERO // Overflow. If not signaling, round to nearest (including infinity) according to rounding mode FE_OVERFLOW = 0x0008, #define FE_OVERFLOW FE_OVERFLOW // Underflow. If not signaling, use 0 instead FE_UNDERFLOW = 0x0010, #define FE_UNDERFLOW FE_UNDERFLOW // Rounding was not exact (ex: sqrt(2) is never exact) or when overflow causes rounding FE_INEXACT = 0x0020, #define FE_INEXACT FE_INEXACT // Combination of all the above FE_ALL_EXCEPT = 0x003F #define FE_ALL_EXCEPT FE_ALL_EXCEPT }; // Flags for FPU rounding modes enum FPU_RoundMode { FE_TONEAREST = 0x0000, #define FE_TONEAREST FE_TONEAREST FE_DOWNWARD = 0x0400, #define FE_DOWNWARD FE_DOWNWARD FE_UPWARD = 0x0800, #define FE_UPWARD FE_UPWARD FE_TOWARDZERO = 0x0C00 #define FE_TOWARDZERO FE_TOWARDZERO }; /* Note: SSE control word, bits 0..15 0->5: Run-time status flags 6: DAZ (denormals are zero, i.e. don't use denormals if bit is 1) 7->12: Exception flags, same meaning as for the x87 ones 13,14: Rounding flags, same meaning as for the x87 ones 15: Flush to zero (FTZ) for automatic handling of underflow (default is NO) */ // plan for portability #if defined(_MSC_VER) #if _WIN64 // No fldcw intrinsics on Windows x64, punt to external asm // Seems like using unsigned is better on windows x64: http://www.virtualdub.org/blog/pivot/entry.php?id=340 extern "C" { void streflop_winx64_fldcw(unsigned short mode); } extern "C" { unsigned short streflop_winx64_fstcw(); } extern "C" { void streflop_winx64_fclex(void); } extern "C" { void streflop_winx64_stmxcsr(unsigned int mode); } extern "C" { void streflop_winx64_ldmxcsr(unsigned int mode); } #define STREFLOP_FSTCW(cw) do { short tmp = 0; tmp = streflop_winx64_fstcw(); (cw) = tmp; } while (0) #define STREFLOP_FLDCW(cw) do { short tmp = (cw); streflop_winx64_fldcw(tmp); } while (0) #define STREFLOP_STMXCSR(cw) do { int tmp = 0; streflop_winx64_stmxcsr(tmp); (cw) = tmp; } while (0) #define STREFLOP_LDMXCSR(cw) do { int tmp = (cw); streflop_winx64_ldmxcsr(tmp); } while (0) #else #define STREFLOP_FSTCW(cw) do { short tmp; __asm { fstcw tmp }; (cw) = tmp; } while (0) #define STREFLOP_FLDCW(cw) do { short tmp = (cw); __asm { fclex }; __asm { fldcw tmp }; } while (0) #define STREFLOP_STMXCSR(cw) do { int tmp; __asm { stmxcsr tmp }; (cw) = tmp; } while (0) #define STREFLOP_LDMXCSR(cw) do { int tmp = (cw); __asm { ldmxcsr tmp }; } while (0) #endif #else // defined(_MSC_VER) #define STREFLOP_FSTCW(cw) do { asm volatile ("fstcw %0" : "=m" (cw) : ); } while (0) #define STREFLOP_FLDCW(cw) do { asm volatile ("fclex \n fldcw %0" : : "m" (cw)); } while (0) #define STREFLOP_STMXCSR(cw) do { asm volatile ("stmxcsr %0" : "=m" (cw) : ); } while (0) #define STREFLOP_LDMXCSR(cw) do { asm volatile ("ldmxcsr %0" : : "m" (cw) ); } while (0) #endif // defined(_MSC_VER) // Subset of all C99 functions #if defined(STREFLOP_X87) /// Raise exception for these flags inline int feraiseexcept(FPU_Exceptions excepts) { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode &= ~( excepts ); // generate error for selection STREFLOP_FLDCW(fpu_mode); return 0; } /// Clear exceptions for these flags inline int feclearexcept(int excepts) { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode |= excepts; STREFLOP_FLDCW(fpu_mode); return 0; } /// Get current rounding mode inline int fegetround() { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); return fpu_mode & 0x0C00; } /// Set a new rounding mode inline int fesetround(FPU_RoundMode roundMode) { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode &= 0xF3FF; // clear current mode fpu_mode |= roundMode; // sets new mode STREFLOP_FLDCW(fpu_mode); return 0; } typedef short int fenv_t; /// Default env. Defined in Math.cpp to be 0, and initalized on first use to the permanent holder extern fenv_t FE_DFL_ENV; /// Get FP env into the given structure inline int fegetenv(fenv_t *envp) { // check that default env exists, otherwise save it now if (!FE_DFL_ENV) STREFLOP_FSTCW(FE_DFL_ENV); // Now store env into argument STREFLOP_FSTCW(*envp); return 0; } /// Sets FP env from the given structure inline int fesetenv(const fenv_t *envp) { // check that default env exists, otherwise save it now if (!FE_DFL_ENV) STREFLOP_FSTCW(FE_DFL_ENV); // Now overwrite current env by argument STREFLOP_FLDCW(*envp); return 0; } /// get env and clear exceptions inline int feholdexcept(fenv_t *envp) { fegetenv(envp); feclearexcept(FE_ALL_EXCEPT); return 0; } template inline void streflop_init() { struct X {}; X Unknown_numeric_type; // unknown types do not compile T error = Unknown_numeric_type; } /// Initialize the FPU for the different types /// this may also be called to switch between code sections using /// different precisions template<> inline void streflop_init() { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode &= 0xFCFF; // 32 bits internal operations STREFLOP_FLDCW(fpu_mode); // Enable signaling nans if compiled with this option. #if defined(__SUPPORT_SNAN__) && !defined(USE_GML) feraiseexcept(streflop::FPU_Exceptions(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW)); #endif } template<> inline void streflop_init() { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode &= 0xFCFF; fpu_mode |= 0x0200; // 64 bits internal operations STREFLOP_FLDCW(fpu_mode); #if defined(__SUPPORT_SNAN__) && !defined(USE_GML) feraiseexcept(streflop::FPU_Exceptions(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW)); #endif } #if defined(Extended) template<> inline void streflop_init() { unsigned short fpu_mode; STREFLOP_FSTCW(fpu_mode); fpu_mode &= 0xFCFF; fpu_mode |= 0x0300; // 80 bits internal operations STREFLOP_FLDCW(fpu_mode); #if defined(__SUPPORT_SNAN__) && !defined(USE_GML) feraiseexcept(streflop::FPU_Exceptions(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW)); #endif } #endif // defined(Extended) #elif defined(STREFLOP_SSE) /// Raise exception for these flags inline int feraiseexcept(FPU_Exceptions excepts) { // Just in case the compiler would store a value on the st(x) registers unsigned short x87_mode; STREFLOP_FSTCW(x87_mode); x87_mode &= ~( excepts ); // generate error for selection STREFLOP_FLDCW(x87_mode); int sse_mode; STREFLOP_STMXCSR(sse_mode); sse_mode &= ~( excepts << 7 ); // generate error for selection STREFLOP_LDMXCSR(sse_mode); return 0; } /// Clear exceptions for these flags inline int feclearexcept(int excepts) { // Just in case the compiler would store a value on the st(x) registers unsigned short x87_mode; STREFLOP_FSTCW(x87_mode); x87_mode |= excepts; STREFLOP_FLDCW(x87_mode); int sse_mode; STREFLOP_STMXCSR(sse_mode); sse_mode |= excepts << 7; STREFLOP_LDMXCSR(sse_mode); return 0; } /// Get current rounding mode inline int fegetround() { int sse_mode; STREFLOP_STMXCSR(sse_mode); return (sse_mode>>3) & 0x00000C00; } /// Set a new rounding mode inline int fesetround(FPU_RoundMode roundMode) { int sse_mode; STREFLOP_STMXCSR(sse_mode); sse_mode &= 0xFFFF9FFF; // clear current mode sse_mode |= roundMode<<3; // sets new mode STREFLOP_LDMXCSR(sse_mode); return 0; } /// stores both x87 and SSE words struct fenv_t { int sse_mode; short int x87_mode; }; /// Default env. Defined in Math.cpp, structs are initialized to 0 extern fenv_t FE_DFL_ENV; /// Get FP env into the given structure inline int fegetenv(fenv_t *envp) { // check that default env exists, otherwise save it now if (!FE_DFL_ENV.x87_mode) STREFLOP_FSTCW(FE_DFL_ENV.x87_mode); // Now store env into argument STREFLOP_FSTCW(envp->x87_mode); // For SSE if (!FE_DFL_ENV.sse_mode) STREFLOP_STMXCSR(FE_DFL_ENV.sse_mode); // Now store env into argument STREFLOP_STMXCSR(envp->sse_mode); return 0; } /// Sets FP env from the given structure inline int fesetenv(const fenv_t *envp) { // check that default env exists, otherwise save it now if (!FE_DFL_ENV.x87_mode) STREFLOP_FSTCW(FE_DFL_ENV.x87_mode); // Now overwrite current env by argument STREFLOP_FLDCW(envp->x87_mode); // For SSE if (!FE_DFL_ENV.sse_mode) STREFLOP_STMXCSR(FE_DFL_ENV.sse_mode); // Now overwrite current env by argument STREFLOP_LDMXCSR(envp->sse_mode); return 0; } /// get env and clear exceptions inline int feholdexcept(fenv_t *envp) { fegetenv(envp); feclearexcept(FE_ALL_EXCEPT); return 0; } template inline void streflop_init() { // Do nothing by default, or for unknown types } /// Initialize the FPU for the different types /// this may also be called to switch between code sections using /// different precisions template<> inline void streflop_init() { // Just in case the compiler would store a value on the st(x) registers unsigned short x87_mode; STREFLOP_FSTCW(x87_mode); x87_mode &= 0xFCFF; // 32 bits internal operations STREFLOP_FLDCW(x87_mode); int sse_mode; STREFLOP_STMXCSR(sse_mode); #if defined(STREFLOP_NO_DENORMALS) sse_mode |= 0x8040; // set DAZ and FTZ #else sse_mode &= 0xFFFF7FBF; // clear DAZ and FTZ #endif STREFLOP_LDMXCSR(sse_mode); } template<> inline void streflop_init() { // Just in case the compiler would store a value on the st(x) registers unsigned short x87_mode; STREFLOP_FSTCW(x87_mode); x87_mode &= 0xFCFF; x87_mode |= 0x0200; // 64 bits internal operations STREFLOP_FLDCW(x87_mode); int sse_mode; STREFLOP_STMXCSR(sse_mode); #if defined(STREFLOP_NO_DENORMALS) sse_mode |= 0x8040; // set DAZ and FTZ #else sse_mode &= 0xFFFF7FBF; // clear DAZ and FTZ #endif STREFLOP_LDMXCSR(sse_mode); } #if defined(Extended) template<> inline void streflop_init() { // Just in case the compiler would store a value on the st(x) registers unsigned short x87_mode; STREFLOP_FSTCW(x87_mode); x87_mode &= 0xFCFF; x87_mode |= 0x0300; // 80 bits internal operations STREFLOP_FLDCW(x87_mode); int sse_mode; STREFLOP_STMXCSR(sse_mode); #if defined(STREFLOP_NO_DENORMALS) sse_mode |= 0x8040; // set DAZ and FTZ #else sse_mode &= 0xFFFF7FBF; // clear DAZ and FTZ #endif STREFLOP_LDMXCSR(sse_mode); } #endif // defined(Extended) #elif defined(STREFLOP_SOFT) /// Raise exception for these flags inline int feraiseexcept(FPU_Exceptions excepts) { // Use positive logic SoftFloat::float_exception_realtraps |= excepts; return 0; } /// Clear exceptions for these flags inline int feclearexcept(int excepts) { // Use positive logic SoftFloat::float_exception_realtraps &= ~( excepts ); return 0; } /// Get current rounding mode inline int fegetround() { // see softfloat.h for the definition switch (SoftFloat::float_rounding_mode) { case SoftFloat::float_round_down: return FE_DOWNWARD; case SoftFloat::float_round_up: return FE_UPWARD; case SoftFloat::float_round_to_zero: return FE_TOWARDZERO; default:; // is also initial mode } // case SoftFloat::float_round_nearest_even: return FE_TONEAREST; } /// Set a new rounding mode inline int fesetround(FPU_RoundMode roundMode) { // see softfloat.h for the definition switch (roundMode) { case FE_DOWNWARD: SoftFloat::float_rounding_mode = SoftFloat::float_round_down; return 0; case FE_UPWARD: SoftFloat::float_rounding_mode = SoftFloat::float_round_up; return 0; case FE_TOWARDZERO: SoftFloat::float_rounding_mode = SoftFloat::float_round_to_zero; return 0; case FE_TONEAREST: SoftFloat::float_rounding_mode = SoftFloat::float_round_nearest_even; return 0; } // Error, invalid mode return 1; } /// SoftFloat environment comprises non-volatile state variables struct fenv_t { char tininess; char rounding_mode; int exception_realtraps; }; /// Default env. Defined in Math.cpp, initialized to some invalid value for detection extern fenv_t FE_DFL_ENV; /// Get FP env into the given structure inline int fegetenv(fenv_t *envp) { // check that default env exists, otherwise save it now if (FE_DFL_ENV.tininess==42) { // First use: save default environment now FE_DFL_ENV.tininess = SoftFloat::float_detect_tininess; FE_DFL_ENV.rounding_mode = SoftFloat::float_rounding_mode; FE_DFL_ENV.exception_realtraps = SoftFloat::float_exception_realtraps; } // Now get the current env in the given argument envp->tininess = SoftFloat::float_detect_tininess; envp->rounding_mode = SoftFloat::float_rounding_mode; envp->exception_realtraps = SoftFloat::float_exception_realtraps; return 0; } /// Sets FP env from the given structure inline int fesetenv(const fenv_t *envp) { // check that default env exists, otherwise save it now if (FE_DFL_ENV.tininess==42) { // First use: save default environment now FE_DFL_ENV.tininess = SoftFloat::float_detect_tininess; FE_DFL_ENV.rounding_mode = SoftFloat::float_rounding_mode; FE_DFL_ENV.exception_realtraps = SoftFloat::float_exception_realtraps; } // Now get the current env in the given argument SoftFloat::float_detect_tininess = envp->tininess; SoftFloat::float_rounding_mode = envp->rounding_mode; SoftFloat::float_exception_realtraps = envp->exception_realtraps; return 0; } /// get env and clear exceptions inline int feholdexcept(fenv_t *envp) { fegetenv(envp); feclearexcept(FE_ALL_EXCEPT); return 0; } template inline void streflop_init() { // Do nothing by default, or for unknown types } /// Initialize the FPU for the different types /// this may also be called to switch between code sections using /// different precisions template<> inline void streflop_init() { } template<> inline void streflop_init() { } template<> inline void streflop_init() { } #else // defined(STREFLOP_X87) #error STREFLOP: Invalid combination or unknown FPU type. #endif // defined(STREFLOP_X87) } #endif // STREFLOP_FPU_H