MegaGlest/source/shared_lib/sources/graphics/model.cpp

2309 lines
83 KiB
C++

// ==============================================================
// This file is part of Glest Shared Library (www.glest.org)
//
// Copyright (C) 2001-2008 Martiño Figueroa
//
// You can redistribute this code and/or modify it under
// the terms of the GNU General Public License as published
// by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version
// ==============================================================
#include "model.h"
#include <cstdio>
#include <cassert>
#include <stdexcept>
#include "interpolation.h"
#include "conversion.h"
#include "util.h"
#include "platform_common.h"
#include "opengl.h"
#include "platform_util.h"
//#include <memory>
#include <map>
#include <vector>
#include "leak_dumper.h"
using namespace Shared::Platform;
using namespace Shared::PlatformCommon;
using namespace Shared::Graphics::Gl;
using namespace std;
using namespace Shared::Util;
namespace Shared{ namespace Graphics{
using namespace Util;
// Utils methods for endianness conversion
void toEndianFileHeader(FileHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
for(unsigned int i = 0; i < 3; ++i) {
header.id[i] = Shared::PlatformByteOrder::toCommonEndian(header.id[i]);
}
header.version = Shared::PlatformByteOrder::toCommonEndian(header.version);
}
}
void fromEndianFileHeader(FileHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
for(unsigned int i = 0; i < 3; ++i) {
header.id[i] = Shared::PlatformByteOrder::fromCommonEndian(header.id[i]);
}
header.version = Shared::PlatformByteOrder::fromCommonEndian(header.version);
}
}
void toEndianModelHeader(ModelHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.type = Shared::PlatformByteOrder::toCommonEndian(header.type);
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void fromEndianModelHeader(ModelHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.type = Shared::PlatformByteOrder::toCommonEndian(header.type);
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void toEndianMeshHeader(MeshHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
for(unsigned int i = 0; i < meshNameSize; ++i) {
header.name[i] = Shared::PlatformByteOrder::toCommonEndian(header.name[i]);
}
header.frameCount = Shared::PlatformByteOrder::toCommonEndian(header.frameCount);
header.vertexCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
for(unsigned int i = 0; i < 3; ++i) {
header.diffuseColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.diffuseColor[i]);
header.specularColor[i] = Shared::PlatformByteOrder::toCommonEndian(header.specularColor[i]);
}
header.specularPower = Shared::PlatformByteOrder::toCommonEndian(header.specularPower);
header.opacity = Shared::PlatformByteOrder::toCommonEndian(header.opacity);
header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties);
header.textures = Shared::PlatformByteOrder::toCommonEndian(header.textures);
}
}
void fromEndianMeshHeader(MeshHeader &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
for(unsigned int i = 0; i < meshNameSize; ++i) {
header.name[i] = Shared::PlatformByteOrder::fromCommonEndian(header.name[i]);
}
header.frameCount = Shared::PlatformByteOrder::fromCommonEndian(header.frameCount);
header.vertexCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
for(unsigned int i = 0; i < 3; ++i) {
header.diffuseColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.diffuseColor[i]);
header.specularColor[i] = Shared::PlatformByteOrder::fromCommonEndian(header.specularColor[i]);
}
header.specularPower = Shared::PlatformByteOrder::fromCommonEndian(header.specularPower);
header.opacity = Shared::PlatformByteOrder::fromCommonEndian(header.opacity);
header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties);
header.textures = Shared::PlatformByteOrder::fromCommonEndian(header.textures);
}
}
void toEndianModelHeaderV3(ModelHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.meshCount = Shared::PlatformByteOrder::toCommonEndian(header.meshCount);
}
}
void fromEndianModelHeaderV3(ModelHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.meshCount = Shared::PlatformByteOrder::fromCommonEndian(header.meshCount);
}
}
void toEndianMeshHeaderV3(MeshHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
header.properties = Shared::PlatformByteOrder::toCommonEndian(header.properties);
for(unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]);
}
}
}
void fromEndianMeshHeaderV3(MeshHeaderV3 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
header.properties = Shared::PlatformByteOrder::fromCommonEndian(header.properties);
for(unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]);
}
}
}
void toEndianMeshHeaderV2(MeshHeaderV2 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::toCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::toCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::toCommonEndian(header.indexCount);
header.hasTexture = Shared::PlatformByteOrder::toCommonEndian(header.hasTexture);
header.primitive = Shared::PlatformByteOrder::toCommonEndian(header.primitive);
header.cullFace = Shared::PlatformByteOrder::toCommonEndian(header.cullFace);
for(unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::toCommonEndian(header.texName[i]);
}
}
}
void fromEndianMeshHeaderV2(MeshHeaderV2 &header) {
static bool bigEndianSystem = Shared::PlatformByteOrder::isBigEndian();
if(bigEndianSystem == true) {
header.vertexFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.vertexFrameCount);
header.normalFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.normalFrameCount);
header.texCoordFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.texCoordFrameCount);
header.colorFrameCount = Shared::PlatformByteOrder::fromCommonEndian(header.colorFrameCount);
header.pointCount = Shared::PlatformByteOrder::fromCommonEndian(header.pointCount);
header.indexCount = Shared::PlatformByteOrder::fromCommonEndian(header.indexCount);
header.hasTexture = Shared::PlatformByteOrder::fromCommonEndian(header.hasTexture);
header.primitive = Shared::PlatformByteOrder::fromCommonEndian(header.primitive);
header.cullFace = Shared::PlatformByteOrder::fromCommonEndian(header.cullFace);
for(unsigned int i = 0; i < 64; ++i) {
header.texName[i] = Shared::PlatformByteOrder::fromCommonEndian(header.texName[i]);
}
}
}
// =====================================================
// class Mesh
// =====================================================
// ==================== constructor & destructor ====================
Mesh::Mesh() {
textureManager = NULL;
frameCount= 0;
vertexCount= 0;
indexCount= 0;
texCoordFrameCount = 0;
opacity = 0.0f;
specularPower = 0.0f;
vertices= NULL;
normals= NULL;
texCoords= NULL;
tangents= NULL;
indices= NULL;
interpolationData= NULL;
for(int i=0; i<meshTextureCount; ++i){
textures[i]= NULL;
texturesOwned[i]=false;
}
twoSided= false;
customColor= false;
noSelect= false;
glow= false;
onlySelect=false;
textureFlags=0;
hasBuiltVBOs = false;
// Vertex Buffer Object Names
m_nVBOVertices = 0;
m_nVBOTexCoords = 0;
m_nVBONormals = 0;
m_nVBOIndexes = 0;
}
Mesh::~Mesh() {
end();
}
void Mesh::init() {
try {
vertices= new Vec3f[frameCount*vertexCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,(frameCount*vertexCount),ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
normals= new Vec3f[frameCount*vertexCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,(frameCount*vertexCount),ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
texCoords= new Vec2f[vertexCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,vertexCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
try {
indices= new uint32[indexCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,indexCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
}
void Mesh::end() {
ReleaseVBOs();
delete [] vertices;
vertices=NULL;
delete [] normals;
normals=NULL;
delete [] texCoords;
texCoords=NULL;
delete [] tangents;
tangents=NULL;
delete [] indices;
indices=NULL;
cleanupInterpolationData();
if(textureManager != NULL) {
for(int i = 0; i < meshTextureCount; ++i) {
if(texturesOwned[i] == true && textures[i] != NULL) {
//printf("Deleting Texture [%s] i = %d\n",textures[i]->getPath().c_str(),i);
textureManager->endTexture(textures[i]);
textures[i] = NULL;
}
}
}
textureManager = NULL;
}
// ========================== shadows & interpolation =========================
void Mesh::buildInterpolationData(){
if(interpolationData != NULL) {
printf("**WARNING possible memory leak [Mesh::buildInterpolationData()]\n");
}
interpolationData= new InterpolationData(this);
}
void Mesh::cleanupInterpolationData() {
delete interpolationData;
interpolationData=NULL;
}
void Mesh::updateInterpolationData(float t, bool cycle) {
if(interpolationData != NULL) {
interpolationData->update(t, cycle);
}
}
void Mesh::updateInterpolationVertices(float t, bool cycle) {
if(interpolationData != NULL) {
interpolationData->updateVertices(t, cycle);
}
}
void Mesh::BuildVBOs() {
if(getVBOSupported() == true) {
if(hasBuiltVBOs == false) {
//printf("In [%s::%s Line: %d] setting up a VBO...\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// Generate And Bind The Vertex Buffer
glGenBuffersARB( 1,(GLuint*) &m_nVBOVertices ); // Get A Valid Name
glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBOVertices ); // Bind The Buffer
// Load The Data
glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, vertices, GL_STATIC_DRAW_ARB );
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Texture Coordinate Buffer
glGenBuffersARB( 1, (GLuint*)&m_nVBOTexCoords ); // Get A Valid Name
glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBOTexCoords ); // Bind The Buffer
// Load The Data
glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec2f)*vertexCount, texCoords, GL_STATIC_DRAW_ARB );
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Normal Buffer
glGenBuffersARB( 1, (GLuint*)&m_nVBONormals ); // Get A Valid Name
glBindBufferARB( GL_ARRAY_BUFFER_ARB, m_nVBONormals ); // Bind The Buffer
// Load The Data
glBufferDataARB( GL_ARRAY_BUFFER_ARB, sizeof(Vec3f)*frameCount*vertexCount, normals, GL_STATIC_DRAW_ARB );
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// Generate And Bind The Index Buffer
glGenBuffersARB( 1, (GLuint*)&m_nVBOIndexes ); // Get A Valid Name
glBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, m_nVBOIndexes ); // Bind The Buffer
// Load The Data
glBufferDataARB( GL_ELEMENT_ARRAY_BUFFER_ARB, sizeof(uint32)*indexCount, indices, GL_STATIC_DRAW_ARB );
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
// Our Copy Of The Data Is No Longer Necessary, It Is Safe In The Graphics Card
delete [] vertices; vertices = NULL;
delete [] texCoords; texCoords = NULL;
delete [] normals; normals = NULL;
delete [] indices; indices = NULL;
delete interpolationData;
interpolationData = NULL;
hasBuiltVBOs = true;
}
}
}
void Mesh::ReleaseVBOs() {
if(getVBOSupported() == true) {
if(hasBuiltVBOs == true) {
glDeleteBuffersARB( 1, (GLuint*)&m_nVBOVertices ); // Get A Valid Name
glDeleteBuffersARB( 1, (GLuint*)&m_nVBOTexCoords ); // Get A Valid Name
glDeleteBuffersARB( 1, (GLuint*)&m_nVBONormals ); // Get A Valid Name
glDeleteBuffersARB( 1, (GLuint*)&m_nVBOIndexes ); // Get A Valid Name
hasBuiltVBOs = false;
}
}
}
// ==================== load ====================
string Mesh::findAlternateTexture(vector<string> conversionList, string textureFile) {
string result = textureFile;
string fileExt = extractExtension(textureFile);
for(unsigned int i = 0; i < conversionList.size(); ++i) {
string convertTo = conversionList[i];
if(fileExt != convertTo) {
string alternateTexture = textureFile;
replaceAll(alternateTexture, "." + fileExt, "." + convertTo);
if(fileExists(alternateTexture) == true) {
result = alternateTexture;
break;
}
}
}
return result;
}
void Mesh::loadV2(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
bool deletePixMapAfterLoad, std::map<string,vector<pair<string, string> > > *loadedFileList,
string sourceLoader,string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeaderV2 meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV2), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeaderV2(meshHeader);
if(meshHeader.normalFrameCount != meshHeader.vertexFrameCount) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Old v2 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]",meshHeader.vertexFrameCount,meshHeader.normalFrameCount,meshIndex,modelFile.c_str());
throw megaglest_runtime_error(szBuf,true);
}
if(meshHeader.texCoordFrameCount != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Old v2 model: texture coord frame count is not 1 [t = %d] meshIndex = %d modelFile [%s]",meshHeader.texCoordFrameCount,meshIndex,modelFile.c_str());
throw megaglest_runtime_error(szBuf,true);
}
//init
frameCount= meshHeader.vertexFrameCount;
vertexCount= meshHeader.pointCount;
indexCount= meshHeader.indexCount;
texCoordFrameCount = meshHeader.texCoordFrameCount;
init();
//misc
twoSided= false;
customColor= false;
noSelect= false;
glow= false;
onlySelect= false;
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v2, this = %p Found meshHeader.hasTexture = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n",this,meshHeader.hasTexture,toLower(reinterpret_cast<char*>(meshHeader.texName)).c_str(),mtDiffuse,meshIndex,modelFile.c_str());
textureFlags= 0;
if(meshHeader.hasTexture) {
textureFlags= 1;
}
//texture
if(meshHeader.hasTexture && textureManager!=NULL){
texturePaths[mtDiffuse]= toLower(reinterpret_cast<char*>(meshHeader.texName));
string texPath= dir;
if(texPath != "") {
endPathWithSlash(texPath);
}
texPath += texturePaths[mtDiffuse];
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str());
textures[mtDiffuse]= dynamic_cast<Texture2D*>(textureManager->getTexture(texPath));
if(textures[mtDiffuse] == NULL) {
if(fileExists(texPath) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
texPath = findAlternateTexture(conversionList, texPath);
}
if(fileExists(texPath) == true) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v2 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str());
textures[mtDiffuse]= textureManager->newTexture2D();
textures[mtDiffuse]->load(texPath);
if(loadedFileList) {
(*loadedFileList)[texPath].push_back(make_pair(sourceLoader,sourceLoader));
}
texturesOwned[mtDiffuse]=true;
textures[mtDiffuse]->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy());
if(deletePixMapAfterLoad == true) {
textures[mtDiffuse]->deletePixels();
}
}
else {
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v2 model is missing texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str());
}
}
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if(textureFlags & (1<<mtDiffuse)) {
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if(readBytes != 1 && vertexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(&diffuseColor, 1);
readBytes = fread(&opacity, sizeof(float32), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity);
int seek_result = fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount-1), SEEK_CUR);
if(seek_result != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fseek returned failure = %d [%u] on line: %d.",seek_result,indexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if(readBytes != 1 && indexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
}
void Mesh::loadV3(int meshIndex, const string &dir, FILE *f,
TextureManager *textureManager,bool deletePixMapAfterLoad,
std::map<string,vector<pair<string, string> > > *loadedFileList,
string sourceLoader,string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeaderV3 meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeaderV3), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeaderV3(meshHeader);
if(meshHeader.normalFrameCount != meshHeader.vertexFrameCount) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Old v3 model: vertex frame count different from normal frame count [v = %d, n = %d] meshIndex = %d modelFile [%s]",meshHeader.vertexFrameCount,meshHeader.normalFrameCount,meshIndex,modelFile.c_str());
throw megaglest_runtime_error(szBuf,true);
}
//init
frameCount= meshHeader.vertexFrameCount;
vertexCount= meshHeader.pointCount;
indexCount= meshHeader.indexCount;
texCoordFrameCount = meshHeader.texCoordFrameCount;
init();
//misc
twoSided= (meshHeader.properties & mp3TwoSided) != 0;
customColor= (meshHeader.properties & mp3CustomColor) != 0;
noSelect = false;
glow = false;
onlySelect=false;
textureFlags= 0;
if((meshHeader.properties & mp3NoTexture) != mp3NoTexture) {
textureFlags= 1;
}
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v3, this = %p Found meshHeader.properties = %d, textureFlags = %d, texName [%s] mtDiffuse = %d meshIndex = %d modelFile [%s]\n",this,meshHeader.properties,textureFlags,toLower(reinterpret_cast<char*>(meshHeader.texName)).c_str(),mtDiffuse,meshIndex,modelFile.c_str());
//texture
if((meshHeader.properties & mp3NoTexture) != mp3NoTexture && textureManager!=NULL){
texturePaths[mtDiffuse]= toLower(reinterpret_cast<char*>(meshHeader.texName));
string texPath= dir;
if(texPath != "") {
endPathWithSlash(texPath);
}
texPath += texturePaths[mtDiffuse];
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str());
textures[mtDiffuse]= dynamic_cast<Texture2D*>(textureManager->getTexture(texPath));
if(textures[mtDiffuse] == NULL) {
if(fileExists(texPath) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
texPath = findAlternateTexture(conversionList, texPath);
}
if(fileExists(texPath) == true) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] v3 model texture [%s] meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshIndex,modelFile.c_str());
textures[mtDiffuse]= textureManager->newTexture2D();
textures[mtDiffuse]->load(texPath);
if(loadedFileList) {
(*loadedFileList)[texPath].push_back(make_pair(sourceLoader,sourceLoader));
}
texturesOwned[mtDiffuse]=true;
textures[mtDiffuse]->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy());
if(deletePixMapAfterLoad == true) {
textures[mtDiffuse]->deletePixels();
}
}
else {
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v3 model is missing texture [%s] meshHeader.properties = %d meshIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,texPath.c_str(),meshHeader.properties,meshIndex,modelFile.c_str());
}
}
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if(textureFlags & (1<<mtDiffuse)) {
for(unsigned int i=0; i<meshHeader.texCoordFrameCount; ++i){
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if(readBytes != 1 && vertexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
}
readBytes = fread(&diffuseColor, sizeof(Vec3f), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(&diffuseColor, 1);
readBytes = fread(&opacity, sizeof(float32), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
opacity = Shared::PlatformByteOrder::fromCommonEndian(opacity);
int seek_result = fseek(f, sizeof(Vec4f)*(meshHeader.colorFrameCount-1), SEEK_CUR);
if(seek_result != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fseek returned failure = %d [%u] on line: %d.",seek_result,indexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if(readBytes != 1 && indexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
}
Texture2D* Mesh::loadMeshTexture(int meshIndex, int textureIndex,
TextureManager *textureManager, string textureFile,
int textureChannelCount, bool &textureOwned, bool deletePixMapAfterLoad,
std::map<string,vector<pair<string, string> > > *loadedFileList,
string sourceLoader,string modelFile) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #1 load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str());
Texture2D* texture = dynamic_cast<Texture2D*>(textureManager->getTexture(textureFile));
if(texture == NULL) {
if(fileExists(textureFile) == false) {
vector<string> conversionList;
conversionList.push_back("png");
conversionList.push_back("jpg");
conversionList.push_back("tga");
conversionList.push_back("bmp");
textureFile = findAlternateTexture(conversionList, textureFile);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #2 load texture [%s]\n",__FUNCTION__,textureFile.c_str());
}
if(fileExists(textureFile) == true) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str());
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture exists loading [%s]\n",__FUNCTION__,textureFile.c_str());
texture = textureManager->newTexture2D();
if(textureChannelCount != -1) {
texture->getPixmap()->init(textureChannelCount);
}
texture->load(textureFile);
if(loadedFileList) {
(*loadedFileList)[textureFile].push_back(make_pair(sourceLoader,sourceLoader));
}
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture loaded [%s]\n",__FUNCTION__,textureFile.c_str());
textureOwned = true;
texture->init(textureManager->getTextureFilter(),textureManager->getMaxAnisotropy());
if(deletePixMapAfterLoad == true) {
texture->deletePixels();
}
//if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] texture inited [%s]\n",__FUNCTION__,textureFile.c_str());
}
else {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s] #3 cannot load texture [%s] modelFile [%s]\n",__FUNCTION__,textureFile.c_str(),modelFile.c_str());
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error v4 model is missing texture [%s] textureFlags = %d meshIndex = %d textureIndex = %d modelFile [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,textureFile.c_str(),textureFlags,meshIndex,textureIndex,modelFile.c_str());
}
}
return texture;
}
void Mesh::load(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
bool deletePixMapAfterLoad,std::map<string,vector<pair<string, string> > > *loadedFileList,
string sourceLoader,string modelFile) {
this->textureManager = textureManager;
//read header
MeshHeader meshHeader;
size_t readBytes = fread(&meshHeader, sizeof(MeshHeader), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianMeshHeader(meshHeader);
name = reinterpret_cast<char*>(meshHeader.name);
//printf("Load, Found meshTextureCount = %d, meshHeader.textures = %d\n",meshTextureCount,meshHeader.textures);
//init
frameCount= meshHeader.frameCount;
vertexCount= meshHeader.vertexCount;
indexCount= meshHeader.indexCount;
init();
//properties
customColor= (meshHeader.properties & mpfCustomColor) != 0;
twoSided= (meshHeader.properties & mpfTwoSided) != 0;
noSelect= (meshHeader.properties & mpfNoSelect) != 0;
glow= (meshHeader.properties & mpfGlow) != 0;
onlySelect= (meshHeader.properties & mpfOnlySelect) != 0;
//material
diffuseColor= Vec3f(meshHeader.diffuseColor);
specularColor= Vec3f(meshHeader.specularColor);
specularPower= meshHeader.specularPower;
opacity= meshHeader.opacity;
if(opacity==0){
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("found a mesh with opacity=0 in header, using opacity=1 to see it now \n");
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("file: %s\n",modelFile.c_str());
opacity=1.0f;
}
textureFlags= meshHeader.textures;
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load v4, this = %p Found meshHeader.textures = %d meshIndex = %d\n",this,meshHeader.textures,meshIndex);
//maps
uint32 flag= 1;
for(int i = 0; i < meshTextureCount; ++i) {
if(meshHeader.textures & flag) {
uint8 cMapPath[mapPathSize+1];
memset(&cMapPath[0],0,mapPathSize+1);
readBytes = fread(cMapPath, mapPathSize, 1, f);
cMapPath[mapPathSize] = 0;
if(readBytes != 1 && mapPathSize != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,mapPathSize,__LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint8>(cMapPath, mapPathSize);
char mapPathString[mapPathSize+1]="";
memset(&mapPathString[0],0,mapPathSize+1);
memcpy(&mapPathString[0],reinterpret_cast<char*>(cMapPath),mapPathSize);
string mapFullPath= dir;
if(mapFullPath != "") {
endPathWithSlash(mapFullPath);
}
string mapPath= mapPathString;
// if the file does not exists we try it with filename to lower case.
// its a workaround for broken mods made by windows users ( filenames are not case sensitive in windows )
// This allows us to fix mods with bad cases by renaming all texture filesnames to lower case. By this mods work in linux too.
if(fileExists(mapFullPath+mapPath) == false) {
mapPath= toLower(mapPathString);
}
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("mapPath [%s] meshHeader.textures = %d flag = %d (meshHeader.textures & flag) = %d meshIndex = %d i = %d\n",mapPath.c_str(),meshHeader.textures,flag,(meshHeader.textures & flag),meshIndex,i);
mapFullPath += mapPath;
if(textureManager) {
textures[i] = loadMeshTexture(meshIndex, i, textureManager, mapFullPath,
meshTextureChannelCount[i],texturesOwned[i],
deletePixMapAfterLoad, loadedFileList, sourceLoader,modelFile);
}
}
flag *= 2;
}
//read data
readBytes = fread(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(vertices, frameCount*vertexCount);
readBytes = fread(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(readBytes != 1 && (frameCount * vertexCount) != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec3f>(normals, frameCount*vertexCount);
if(meshHeader.textures!=0){
readBytes = fread(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
if(readBytes != 1 && vertexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u][%u] on line: %d.",readBytes,frameCount,vertexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianVecArray<Vec2f>(texCoords, vertexCount);
}
readBytes = fread(indices, sizeof(uint32)*indexCount, 1, f);
if(readBytes != 1 && indexCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,indexCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
Shared::PlatformByteOrder::fromEndianTypeArray<uint32>(indices, indexCount);
//tangents
if(textures[mtNormal]!=NULL){
computeTangents();
}
}
void Mesh::save(int meshIndex, const string &dir, FILE *f, TextureManager *textureManager,
string convertTextureToFormat, std::map<string,int> &textureDeleteList,
bool keepsmallest,string modelFile) {
MeshHeader meshHeader;
memset(&meshHeader, 0, sizeof(struct MeshHeader));
strncpy((char*)meshHeader.name, (char*)name.c_str(), name.length());
meshHeader.frameCount= frameCount;
meshHeader.vertexCount= vertexCount;
meshHeader.indexCount = indexCount;
//material
memcpy((float32*)meshHeader.diffuseColor, (float32*)diffuseColor.ptr(), sizeof(float32) * 3);
memcpy((float32*)meshHeader.specularColor, (float32*)specularColor.ptr(), sizeof(float32) * 3);
meshHeader.specularPower = specularPower;
meshHeader.opacity = opacity;
//properties
meshHeader.properties = 0;
if(customColor) {
meshHeader.properties |= mpfCustomColor;
}
if(twoSided) {
meshHeader.properties |= mpfTwoSided;
}
if(noSelect) {
meshHeader.properties |= mpfNoSelect;
}
if(glow) {
meshHeader.properties |= mpfGlow;
}
if(onlySelect){
meshHeader.properties|= mpfOnlySelect;
}
meshHeader.textures = textureFlags;
fwrite(&meshHeader, sizeof(MeshHeader), 1, f);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, this = %p, Found meshTextureCount = %d, meshHeader.textures = %d meshIndex = %d\n",this,meshTextureCount,meshHeader.textures,meshIndex);
//maps
uint32 flag= 1;
for(int i = 0; i < meshTextureCount; ++i) {
if((meshHeader.textures & flag)) {
uint8 cMapPath[mapPathSize];
memset(&cMapPath[0],0,mapPathSize);
Texture2D *texture = textures[i];
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, [%d] mesh texture ptr [%p]\n",i,texture);
if(texture != NULL) {
string file = toLower(texture->getPath());
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Found mesh texture [%s]\n",file.c_str());
if(toLower(convertTextureToFormat) != "" &&
EndsWith(file, "." + convertTextureToFormat) == false) {
long originalSize = getFileSize(file);
long newSize = originalSize;
string fileExt = extractExtension(file);
replaceAll(file, "." + fileExt, "." + convertTextureToFormat);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, Convert from [%s] to [%s]\n",texture->getPath().c_str(),file.c_str());
if(convertTextureToFormat == "tga") {
texture->getPixmap()->saveTga(file);
newSize = getFileSize(file);
if(keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
}
else {
printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
}
else if(convertTextureToFormat == "bmp") {
texture->getPixmap()->saveBmp(file);
newSize = getFileSize(file);
if(keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
}
else {
printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
}
else if(convertTextureToFormat == "jpg") {
texture->getPixmap()->saveJpg(file);
newSize = getFileSize(file);
if(keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
}
else {
printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
}
else if(convertTextureToFormat == "png") {
texture->getPixmap()->savePng(file);
newSize = getFileSize(file);
if(keepsmallest == false || newSize <= originalSize) {
textureDeleteList[texture->getPath()] = textureDeleteList[texture->getPath()] + 1;
}
else {
printf("Texture will not be converted, keeping smallest texture [%s]\n",texture->getPath().c_str());
textureDeleteList[file] = textureDeleteList[file] + 1;
}
}
else {
throw megaglest_runtime_error("Unsupported texture format: [" + convertTextureToFormat + "]");
}
//textureManager->endTexture(texture);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, load new texture [%s] originalSize [%ld] newSize [%ld]\n",file.c_str(),originalSize,newSize);
if(keepsmallest == false || newSize <= originalSize) {
texture = loadMeshTexture(meshIndex, i, textureManager,file,
meshTextureChannelCount[i],
texturesOwned[i],
false,
NULL,
"",
modelFile);
}
}
file = extractFileFromDirectoryPath(texture->getPath());
if(file.length() > mapPathSize) {
throw megaglest_runtime_error("file.length() > mapPathSize, file.length() = " + intToStr(file.length()));
}
else if(file.length() == 0) {
throw megaglest_runtime_error("file.length() == 0");
}
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Save, new texture file [%s]\n",file.c_str());
memset(&cMapPath[0],0,mapPathSize);
memcpy(&cMapPath[0],file.c_str(),file.length());
}
fwrite(cMapPath, mapPathSize, 1, f);
}
flag*= 2;
}
//read data
fwrite(vertices, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
fwrite(normals, sizeof(Vec3f)*frameCount*vertexCount, 1, f);
if(meshHeader.textures != 0) {
fwrite(texCoords, sizeof(Vec2f)*vertexCount, 1, f);
}
fwrite(indices, sizeof(uint32)*indexCount, 1, f);
}
void Mesh::computeTangents(){
delete [] tangents;
try {
tangents= new Vec3f[vertexCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,vertexCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
for(unsigned int i=0; i<vertexCount; ++i){
tangents[i]= Vec3f(0.f);
}
for(unsigned int i=0; i<indexCount; i+=3){
for(int j=0; j<3; ++j){
uint32 i0= indices[i+j];
uint32 i1= indices[i+(j+1)%3];
uint32 i2= indices[i+(j+2)%3];
Vec3f p0= vertices[i0];
Vec3f p1= vertices[i1];
Vec3f p2= vertices[i2];
float u0= texCoords[i0].x;
float u1= texCoords[i1].x;
float u2= texCoords[i2].x;
float v0= texCoords[i0].y;
float v1= texCoords[i1].y;
float v2= texCoords[i2].y;
tangents[i0]+=
((p2-p0)*(v1-v0)-(p1-p0)*(v2-v0))/
((u2-u0)*(v1-v0)-(u1-u0)*(v2-v0));
}
}
for(unsigned int i=0; i<vertexCount; ++i){
/*Vec3f binormal= normals[i].cross(tangents[i]);
tangents[i]+= binormal.cross(normals[i]);*/
tangents[i].normalize();
}
}
void Mesh::deletePixels() {
for(int i = 0; i < meshTextureCount; ++i) {
if(textures[i] != NULL) {
textures[i]->deletePixels();
}
}
}
// ===============================================
// class Model
// ===============================================
// ==================== constructor & destructor ====================
Model::Model() {
if(GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) {
throw megaglest_runtime_error("Loading graphics in headless server mode not allowed!");
}
meshCount = 0;
meshes = NULL;
fileVersion = 0;
textureManager = NULL;
lastTData = -1;
lastCycleData = false;
lastTVertex = -1;
lastCycleVertex = false;
}
Model::~Model() {
if(meshes) delete [] meshes;
meshes = NULL;
}
// ==================== data ====================
void Model::buildInterpolationData() const{
for(unsigned int i=0; i<meshCount; ++i){
meshes[i].buildInterpolationData();
}
}
void Model::updateInterpolationData(float t, bool cycle) {
if(lastTData != t || lastCycleData != cycle) {
for(unsigned int i = 0; i < meshCount; ++i) {
meshes[i].updateInterpolationData(t, cycle);
}
lastTData = t;
lastCycleData = cycle;
}
}
void Model::updateInterpolationVertices(float t, bool cycle) {
if(lastTVertex != t || lastCycleVertex != cycle) {
for(unsigned int i = 0; i < meshCount; ++i) {
meshes[i].updateInterpolationVertices(t, cycle);
}
lastTVertex = t;
lastCycleVertex = cycle;
}
}
// ==================== get ====================
uint32 Model::getTriangleCount() const {
uint32 triangleCount= 0;
for(uint32 i = 0; i < meshCount; ++i) {
triangleCount += meshes[i].getIndexCount()/3;
}
return triangleCount;
}
uint32 Model::getVertexCount() const {
uint32 vertexCount= 0;
for(uint32 i = 0; i < meshCount; ++i) {
vertexCount += meshes[i].getVertexCount();
}
return vertexCount;
}
// ==================== io ====================
void Model::load(const string &path, bool deletePixMapAfterLoad,
std::map<string,vector<pair<string, string> > > *loadedFileList, string *sourceLoader) {
this->sourceLoader = (sourceLoader != NULL ? *sourceLoader : "");
this->fileName = path;
if(GlobalStaticFlags::getIsNonGraphicalModeEnabled() == true) {
return;
}
size_t pos = path.find_last_of('.');
string extension = toLower(path.empty() == false ? path.substr(pos + 1) : "");
if(extension == "g3d") {
loadG3d(path,deletePixMapAfterLoad,loadedFileList, this->sourceLoader);
}
else {
throw megaglest_runtime_error("#1 Unknown model format [" + extension + "] file [" + path + "]");
}
}
void Model::save(const string &path, string convertTextureToFormat,
bool keepsmallest) {
string extension = (path.empty() == false ? path.substr(path.find_last_of('.')+1) : "");
if(toLower(extension) == "g3d") {
saveG3d(path,convertTextureToFormat,keepsmallest);
}
else {
throw megaglest_runtime_error("#2 Unknown model format [" + extension + "] file [" + path + "]");
}
}
//load a model from a g3d file
void Model::loadG3d(const string &path, bool deletePixMapAfterLoad,
std::map<string,vector<pair<string, string> > > *loadedFileList,
string sourceLoader) {
try{
#ifdef WIN32
FILE *f= _wfopen(utf8_decode(path).c_str(), L"rb");
#else
FILE *f=fopen(path.c_str(),"rb");
#endif
if (f == NULL) {
printf("In [%s::%s] cannot load file = [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,path.c_str());
throw megaglest_runtime_error("Error opening g3d model file [" + path + "]",true);
}
if(loadedFileList) {
(*loadedFileList)[path].push_back(make_pair(sourceLoader,sourceLoader));
}
string dir= extractDirectoryPathFromFile(path);
//file header
FileHeader fileHeader;
size_t readBytes = fread(&fileHeader, sizeof(FileHeader), 1, f);
if(readBytes != 1) {
fclose(f);
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianFileHeader(fileHeader);
char fileId[4] = "";
memset(&fileId[0],0,4);
memcpy(&fileId[0],reinterpret_cast<char*>(fileHeader.id),3);
if(strncmp(fileId, "G3D", 3) != 0) {
fclose(f);
f = NULL;
printf("In [%s::%s] file = [%s] fileheader.id = [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,path.c_str(),fileId);
throw megaglest_runtime_error("Not a valid G3D model",true);
}
fileVersion= fileHeader.version;
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("Load model, fileVersion = %d\n",fileVersion);
//version 4
if(fileHeader.version == 4) {
//model header
ModelHeader modelHeader;
readBytes = fread(&modelHeader, sizeof(ModelHeader), 1, f);
if(readBytes != 1) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " on line: %d.",readBytes,__LINE__);
throw megaglest_runtime_error(szBuf);
}
fromEndianModelHeader(modelHeader);
meshCount= modelHeader.meshCount;
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n",meshCount);
if(modelHeader.type != mtMorphMesh) {
throw megaglest_runtime_error("Invalid model type");
}
//load meshes
try {
meshes= new Mesh[meshCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
for(uint32 i = 0; i < meshCount; ++i) {
meshes[i].load(i, dir, f, textureManager,deletePixMapAfterLoad,
loadedFileList,sourceLoader,path);
meshes[i].buildInterpolationData();
}
}
//version 3
else if(fileHeader.version == 3) {
readBytes = fread(&meshCount, sizeof(meshCount), 1, f);
if(readBytes != 1 && meshCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,meshCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %u\n",meshCount);
try {
meshes= new Mesh[meshCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
for(uint32 i = 0; i < meshCount; ++i) {
meshes[i].loadV3(i, dir, f, textureManager,deletePixMapAfterLoad,
loadedFileList,sourceLoader,path);
meshes[i].buildInterpolationData();
}
}
//version 2
else if(fileHeader.version == 2) {
readBytes = fread(&meshCount, sizeof(meshCount), 1, f);
if(readBytes != 1 && meshCount != 0) {
char szBuf[8096]="";
snprintf(szBuf,8096,"fread returned wrong size = " MG_SIZE_T_SPECIFIER " [%u] on line: %d.",readBytes,meshCount,__LINE__);
throw megaglest_runtime_error(szBuf);
}
meshCount = Shared::PlatformByteOrder::fromCommonEndian(meshCount);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("meshCount = %d\n",meshCount);
try {
meshes= new Mesh[meshCount];
}
catch(bad_alloc& ba) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error on line: %d size: %d msg: %s\n",__LINE__,meshCount,ba.what());
throw megaglest_runtime_error(szBuf);
}
for(uint32 i = 0; i < meshCount; ++i){
meshes[i].loadV2(i,dir, f, textureManager,deletePixMapAfterLoad,
loadedFileList,sourceLoader,path);
meshes[i].buildInterpolationData();
}
}
else {
throw megaglest_runtime_error("Invalid model version: "+ intToStr(fileHeader.version));
}
fclose(f);
autoJoinMeshFrames();
}
catch(megaglest_runtime_error& ex) {
//printf("1111111 ex.wantStackTrace() = %d\n",ex.wantStackTrace());
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,ex.what());
//printf("2222222\n");
throw megaglest_runtime_error("Exception caught loading 3d file: " + path +"\n"+ ex.what(),!ex.wantStackTrace());
}
catch(exception &e){
//abort();
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,e.what());
throw megaglest_runtime_error("Exception caught loading 3d file: " + path +"\n"+ e.what());
}
}
//save a model to a g3d file
void Model::saveG3d(const string &path, string convertTextureToFormat,
bool keepsmallest) {
string tempModelFilename = path + "cvt";
#ifdef WIN32
FILE *f= _wfopen(utf8_decode(tempModelFilename).c_str(), L"wb");
#else
FILE *f= fopen(tempModelFilename.c_str(), "wb");
#endif
if(f == NULL) {
throw megaglest_runtime_error("Cant open file for writing: [" + tempModelFilename + "]");
}
convertTextureToFormat = toLower(convertTextureToFormat);
//file header
FileHeader fileHeader;
fileHeader.id[0]= 'G';
fileHeader.id[1]= '3';
fileHeader.id[2]= 'D';
fileHeader.version= 4;
fwrite(&fileHeader, sizeof(FileHeader), 1, f);
// file versions
if(fileHeader.version == 4 || fileHeader.version == 3 || fileHeader.version == 2) {
//model header
ModelHeader modelHeader;
modelHeader.meshCount = meshCount;
modelHeader.type = mtMorphMesh;
fwrite(&modelHeader, sizeof(ModelHeader), 1, f);
std::map<string,int> textureDeleteList;
for(uint32 i = 0; i < meshCount; ++i) {
meshes[i].save(i,tempModelFilename, f, textureManager,
convertTextureToFormat,textureDeleteList,
keepsmallest,path);
}
removeFile(path);
if(renameFile(tempModelFilename,path) == true) {
// Now delete old textures since they were converted to a new format
for(std::map<string,int>::iterator iterMap = textureDeleteList.begin();
iterMap != textureDeleteList.end(); ++iterMap) {
removeFile(iterMap->first);
}
}
}
else {
throw megaglest_runtime_error("Invalid model version: "+ intToStr(fileHeader.version));
}
fclose(f);
}
void Model::deletePixels() {
for(uint32 i = 0; i < meshCount; ++i) {
meshes[i].deletePixels();
}
}
class MeshContainer {
protected:
int indexValue;
std::vector<Mesh *> meshes;
public:
MeshContainer() {
this->indexValue = -1;
}
void add(int index, Mesh *mesh) {
if(this->indexValue < 0) {
this->indexValue = index;
}
meshes.push_back(mesh);
}
int index() {
return indexValue;
}
int size() {
return (int)meshes.size();
}
std::vector<Mesh *> get() {
return meshes;
}
};
void Mesh::setVertices(Vec3f *data, uint32 count) {
delete [] this->vertices;
this->vertices = data;
this->vertexCount = count;
}
void Mesh::setNormals(Vec3f *data, uint32 count) {
delete [] this->normals;
this->normals = data;
this->vertexCount = count;
}
void Mesh::setTexCoords(Vec2f *data, uint32 count) {
delete [] this->texCoords;
this->texCoords = data;
this->vertexCount = count;
}
void Mesh::setIndices(uint32 *data, uint32 count) {
delete [] this->indices;
this->indices = data;
this->indexCount = count;
}
void Mesh::copyInto(Mesh *dest, bool ignoreInterpolationData,
bool destinationOwnsTextures) {
for(int index = 0; index < meshTextureCount; ++index){
dest->textures[index] = this->textures[index];
dest->texturesOwned[index] = this->texturesOwned[index];
dest->texturePaths[index] = this->texturePaths[index];
if(destinationOwnsTextures == true) {
this->texturesOwned[index] = false;
}
}
dest->name = this->name;
//vertex data counts
dest->frameCount = this->frameCount;
dest->vertexCount = this->vertexCount;
dest->indexCount = this->indexCount;
dest->texCoordFrameCount = this->texCoordFrameCount;
//vertex data
if(dest->vertices != NULL) {
delete [] dest->vertices;
dest->vertices = NULL;
}
if(this->vertices != NULL) {
dest->vertices = new Vec3f[this->frameCount * this->vertexCount];
memcpy(&dest->vertices[0],&this->vertices[0],this->frameCount * this->vertexCount * sizeof(Vec3f));
}
if(dest->normals != NULL) {
delete [] dest->normals;
dest->normals = NULL;
}
if(this->normals != NULL) {
dest->normals = new Vec3f[this->frameCount * this->vertexCount];
memcpy(&dest->normals[0],&this->normals[0],this->frameCount * this->vertexCount * sizeof(Vec3f));
}
if(dest->texCoords != NULL) {
delete [] dest->texCoords;
dest->texCoords = NULL;
}
if(this->texCoords != NULL) {
dest->texCoords = new Vec2f[this->vertexCount];
memcpy(&dest->texCoords[0],&this->texCoords[0],this->vertexCount * sizeof(Vec2f));
}
if(dest->tangents != NULL) {
delete [] dest->tangents;
dest->tangents = NULL;
}
if(this->tangents != NULL) {
dest->tangents = new Vec3f[this->vertexCount];
memcpy(&dest->tangents[0],&this->tangents[0],this->vertexCount * sizeof(Vec3f));
}
if(dest->indices != NULL) {
delete [] dest->indices;
dest->indices = NULL;
}
if(this->indices != NULL) {
dest->indices = new uint32[this->indexCount];
memcpy(&dest->indices[0],&this->indices[0],this->indexCount * sizeof(uint32));
}
//material data
dest->diffuseColor = this->diffuseColor;
dest->specularColor = this->specularColor;
dest->specularPower = this->specularPower;
dest->opacity = this->opacity;
//properties
dest->twoSided = this->twoSided;
dest->customColor = this->customColor;
dest->noSelect = this->noSelect;
dest->glow = this->glow;
dest->onlySelect = this->onlySelect;
dest->textureFlags = this->textureFlags;
if(ignoreInterpolationData == false) {
dest->interpolationData = this->interpolationData;
}
dest->textureManager = this->textureManager;
// Vertex Buffer Object Names
dest->hasBuiltVBOs = this->hasBuiltVBOs;
dest->m_nVBOVertices = this-> m_nVBOVertices;
dest->m_nVBOTexCoords = this->m_nVBOTexCoords;
dest->m_nVBONormals = this->m_nVBONormals;
dest->m_nVBOIndexes = this->m_nVBOIndexes;
}
void Model::autoJoinMeshFrames() {
/*
print "auto-joining compatible meshes..."
meshes = {}
for mesh in self.meshes:
key = (mesh.texture,mesh.frame_count,mesh.twoSided|mesh.customColour)
if key in meshes:
meshes[key].append(mesh)
else:
meshes[key] = [mesh]
for joinable in meshes.values():
if len(joinable) < 2: continue
base = joinable[0]
print "\tjoining to",base
for mesh in joinable[1:]:
if base.index_count+mesh.index_count > 0xffff:
base = mesh
print "\tjoining to",base
continue
print "\t\t",mesh
for a,b in zip(base.frames,mesh.frames):
a.vertices.extend(b.vertices)
a.normals.extend(b.normals)
if base.texture:
base.textures.extend(mesh.textures)
base.indices.extend(index+base.vertex_count for index in mesh.indices)
base.vertex_count += mesh.vertex_count
base.index_count += mesh.index_count
self.meshes.remove(mesh)
*/
bool haveJoinedMeshes = false;
// First looks for meshes with same texture in the same frame
std::map<std::string,MeshContainer> joinedMeshes;
for(uint32 index = 0; index < meshCount; ++index) {
Mesh &mesh = meshes[index];
// Duplicate mesh vertices are considered to be those with the same
// 1. texture 2. framecount 3. twosided flag value 4. same custom texture color
// It's possible the texture is missing and will be NULL
// if(mesh.getTextureFlags() & 1) {
// printf("Mesh has textures:\n");
// for(unsigned int meshTexIndex = 0; meshTexIndex < meshTextureCount; ++meshTexIndex) {
// printf("Mesh texture index: %d [%p] [%s]\n",meshTexIndex,mesh.getTexture(meshTexIndex),(mesh.getTexture(meshTexIndex) != NULL ? mesh.getTexture(meshTexIndex)->getPath().c_str() : "n/a"));
// }
// }
string mesh_key = ((mesh.getTextureFlags() & 1) && mesh.getTexture(0) ? mesh.getTexture(0)->getPath() : "none");
mesh_key += string("_") + intToStr(mesh.getFrameCount()) +
string("_") + intToStr(mesh.getTwoSided()) +
string("_") + intToStr(mesh.getCustomTexture()) +
string("_") + intToStr(mesh.getNoSelect()) +
string("_") + floatToStr(mesh.getOpacity()) +
string("_") + floatToStr(mesh.getGlow()) +
string("_") + mesh.getDiffuseColor().getString() +
string("_") + mesh.getSpecularColor().getString() +
string("_") + floatToStr(mesh.getSpecularPower());
joinedMeshes[mesh_key].add(index,&mesh);
if(haveJoinedMeshes == false && joinedMeshes[mesh_key].size() > 1) {
haveJoinedMeshes = true;
}
}
if(haveJoinedMeshes == true) {
//printf("*** Detected Joined meshes for model [%s]\n",fileName.c_str());
// We have mesh data to join we now create a list in the same order
// as the original meshes but each index will have 1 or more meshes
// This is done to maintain original mesh ordering
std::map<int, std::vector<Mesh *> > orderedMeshes;
for(std::map<std::string,MeshContainer >::iterator iterMap = joinedMeshes.begin();
iterMap != joinedMeshes.end(); ++iterMap) {
orderedMeshes[iterMap->second.index()] = iterMap->second.get();
//if(iterMap->second.size() > 1) {
// printf("Key [%s] joined meshes: %d\n",iterMap->first.c_str(),iterMap->second.size());
//}
}
// Now the real work of creating a new list of joined mesh data
Mesh *joinedMeshList = new Mesh[joinedMeshes.size()];
int index = 0;
for(std::map<int, std::vector<Mesh *> >::iterator iterMap = orderedMeshes.begin();
iterMap != orderedMeshes.end(); ++iterMap) {
//printf("Join index: %d joincount: %d\n",index,iterMap->second.size());
Mesh *base = &joinedMeshList[index];
// Deep copy mesh data
iterMap->second[0]->copyInto(base, true, true);
if(iterMap->second.size() > 1) {
// Time to join mesh data for this mesh
for(unsigned int joinIndex = 1;
joinIndex < iterMap->second.size(); ++joinIndex) {
Mesh *mesh = iterMap->second[joinIndex];
//if(base->getIndexCount() + mesh->getIndexCount() > 0xffff) {
// printf("Not exactly sure what this IF statement is for?\n");
// mesh->copyInto(base, true, true);
//}
//else {
// Need to add verticies for each from from mesh to base
uint32 originalBaseVertexCount = base->getVertexCount();
uint32 newVertexCount =
base->getVertexCount() + mesh->getVertexCount();
uint32 newVertexFrameCount =
(base->getFrameCount() * newVertexCount);
Vec3f *joined_vertices = new Vec3f[newVertexFrameCount];
Vec3f *joined_normals = new Vec3f[newVertexFrameCount];
uint32 join_index = 0;
// Join mesh vertices and normals
for(unsigned int frameIndex = 0;
frameIndex < base->getFrameCount(); ++frameIndex) {
uint32 baseIndex = frameIndex * originalBaseVertexCount;
uint32 meshIndex = frameIndex * mesh->getVertexCount();
//uint32 appendBaseJoinIndex = frameIndex * newVertexCount;
// first original mesh values get copied
memcpy(&joined_vertices[join_index],
&base->getVertices()[baseIndex],
originalBaseVertexCount * sizeof(Vec3f));
memcpy(&joined_normals[join_index],
&base->getNormals()[baseIndex],
originalBaseVertexCount * sizeof(Vec3f));
join_index += originalBaseVertexCount;
// second joined mesh values get copied
memcpy(&joined_vertices[join_index],
&mesh->getVertices()[meshIndex],
mesh->getVertexCount() * sizeof(Vec3f));
memcpy(&joined_normals[join_index],
&mesh->getNormals()[meshIndex],
mesh->getVertexCount() * sizeof(Vec3f));
join_index += mesh->getVertexCount();
}
// update vertex and normal buffers with joined mesh data
base->setVertices(joined_vertices, newVertexCount);
base->setNormals(joined_normals, newVertexCount);
// If we have texture coords join them
if(base->getTextureFlags() & 1) {
Vec2f *joined_texCoords = new Vec2f[newVertexCount];
// update texture coord buffers with joined mesh data
memcpy(&joined_texCoords[0],
&base->getTexCoords()[0],
originalBaseVertexCount * sizeof(Vec2f));
memcpy(&joined_texCoords[originalBaseVertexCount],
&mesh->getTexCoords()[0],
mesh->getVertexCount() * sizeof(Vec2f));
base->setTexCoords(joined_texCoords, newVertexCount);
}
// update index buffers with joined mesh data
uint32 newindexCount = base->getIndexCount() + mesh->getIndexCount();
uint32 *joined_indexes = new uint32[newindexCount];
uint32 join_index_index = 0;
memcpy(&joined_indexes[join_index_index],
&base->getIndices()[0],
base->getIndexCount() * sizeof(uint32));
join_index_index += base->getIndexCount();
for(unsigned int meshIndex = 0;
meshIndex < mesh->getIndexCount(); ++meshIndex) {
uint32 index_value = mesh->getIndices()[meshIndex];
// join index values
joined_indexes[join_index_index] = index_value + originalBaseVertexCount;
join_index_index++;
}
base->setIndices(joined_indexes, newindexCount);
//}
}
}
base->buildInterpolationData();
index++;
}
delete [] meshes;
meshes = joinedMeshList;
meshCount = (uint32)joinedMeshes.size();
}
}
// ----------------------------------------------------------------------------
bool PixelBufferWrapper::isPBOEnabled = false;
int PixelBufferWrapper::index = 0;
vector<unsigned int> PixelBufferWrapper::pboIds;
PixelBufferWrapper::PixelBufferWrapper(int pboCount,int bufferSize) {
this->bufferSize = bufferSize;
//if(isGlExtensionSupported("GL_ARB_pixel_buffer_object") == true &&
if(GLEW_ARB_pixel_buffer_object) {
PixelBufferWrapper::isPBOEnabled = true;
cleanup();
// For some wacky reason this fails in VC++ 2008
//pboIds.reserve(pboCount);
//glGenBuffersARB(pboCount, (GLuint*)&pboIds[0]);
//
/*
for(int i = 0; i < pboCount; ++i) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Gen i = %d\n",i);
pboIds.push_back(0);
glGenBuffersARB(1, (GLuint*)&pboIds[i]);
// create pixel buffer objects, you need to delete them when program exits.
// glBufferDataARB with NULL pointer reserves only memory space.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[i]);
glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, bufferSize, 0, GL_STREAM_READ_ARB);
}
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
*/
addBuffersToPixelBuf(pboCount);
}
}
void PixelBufferWrapper::addBuffersToPixelBuf(int pboCount) {
int iStartIndex = pboIds.size();
for(int i = 0; i < pboCount; ++i) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Gen i = %d\n",i);
pboIds.push_back(0);
glGenBuffersARB(1, (GLuint*)&pboIds[i+iStartIndex]);
// create pixel buffer objects, you need to delete them when program exits.
// glBufferDataARB with NULL pointer reserves only memory space.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[i+iStartIndex]);
glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, bufferSize, 0, GL_STREAM_READ_ARB);
}
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
}
Pixmap2D *PixelBufferWrapper::getPixelBufferFor(int x,int y,int w,int h, int colorComponents) {
Pixmap2D *pixmapScreenShot = NULL;
if(PixelBufferWrapper::isPBOEnabled == true) {
string codeSection = "A";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
try {
// increment current index first then get the next index
// "index" is used to read pixels from a framebuffer to a PBO
// "nextIndex" is used to process pixels in the other PBO
index = (index + 1) % 2;
codeSection = "B";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// Check for out of range
if(index >= (int)pboIds.size()) {
char szBuf[8096]="";
snprintf(szBuf,8096,"Error / Warning in [%s::%s] on line: %d pixel buffer out of range, index: %d size: %d, attempting to expand buffer...\n",__FILE__,__FUNCTION__,__LINE__,index, (int)pboIds.size());
//throw megaglest_runtime_error(szBuf);
SystemFlags::OutputDebug(SystemFlags::debugError,"%s",szBuf);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d] szBuf: %s\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,szBuf);
codeSection = "C";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
addBuffersToPixelBuf((index - pboIds.size()) + 1);
}
// pbo index used for next frame
//int nextIndex = (index + 1) % 2;
codeSection = "D";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// read framebuffer ///////////////////////////////
// copy pixels from framebuffer to PBO
// Use offset instead of pointer.
// OpenGL should perform asynch DMA transfer, so glReadPixels() will return immediately.
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]);
//glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]);
codeSection = "E";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
//glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, 0);
//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// measure the time reading framebuffer
//t1.stop();
//readTime = t1.getElapsedTimeInMilliSec();
// process pixel data /////////////////////////////
//t1.start();
codeSection = "F";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// map the PBO that contain framebuffer pixels before processing it
//glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[nextIndex]);
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pboIds[index]);
codeSection = "G";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
GLubyte* src = (GLubyte*)glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB, GL_READ_ONLY_ARB);
if(src) {
codeSection = "H";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
pixmapScreenShot = new Pixmap2D(w, h, colorComponents);
codeSection = "I";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
memcpy(pixmapScreenShot->getPixels(),src,pixmapScreenShot->getPixelByteCount());
codeSection = "J";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB); // release pointer to the mapped buffer
//pixmapScreenShot->save("debugPBO.png");
}
codeSection = "K";
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
// measure the time reading framebuffer
//t1.stop();
//processTime = t1.getElapsedTimeInMilliSec();
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
}
catch(megaglest_runtime_error& ex) {
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] codeSection [%s] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,codeSection.c_str(),ex.what());
throw megaglest_runtime_error("Exception caught in getPixelBufferFor codeSection: " + codeSection +"\n"+ ex.what(),!ex.wantStackTrace());
}
catch(exception &e){
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] codeSection [%s] Error [%s]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,codeSection.c_str(),e.what());
throw megaglest_runtime_error("Exception caught in getPixelBufferFor codeSection: " + codeSection +"\n"+ e.what());
}
catch(...){
SystemFlags::OutputDebug(SystemFlags::debugError,"In [%s::%s Line: %d] codeSection [%s] UNKNOWN Error!",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__,codeSection.c_str());
throw megaglest_runtime_error("UNKNOWN Exception caught in getPixelBufferFor codeSection: " + codeSection +"\n");
}
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("In [%s::%s Line: %d]\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
}
return pixmapScreenShot;
}
void PixelBufferWrapper::begin() {
if(PixelBufferWrapper::isPBOEnabled == true) {
// set the framebuffer to read
//glReadBuffer(GL_FRONT);
}
}
void PixelBufferWrapper::end() {
if(PixelBufferWrapper::isPBOEnabled == true) {
// set the framebuffer to read
//glReadBuffer(GL_BACK);
}
}
void PixelBufferWrapper::cleanup() {
if(PixelBufferWrapper::isPBOEnabled == true) {
if(pboIds.empty() == false) {
if(SystemFlags::VERBOSE_MODE_ENABLED) printf("PBO Delete size = %d\n",(int)pboIds.size());
glDeleteBuffersARB((int)pboIds.size(), &pboIds[0]);
pboIds.clear();
glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
}
}
}
PixelBufferWrapper::~PixelBufferWrapper() {
cleanup();
}
// ---------------------------------------------------------------------------
int BaseColorPickEntity::bufferSizeRequired = -1;
const unsigned int BaseColorPickEntity::p = 64007;
const unsigned int BaseColorPickEntity::k = 43067;
unsigned int BaseColorPickEntity::nextColorRGB = BaseColorPickEntity::k;
unsigned char BaseColorPickEntity::nextColorID[COLOR_COMPONENTS] = { 1, 1, 1, 0 };
auto_ptr<PixelBufferWrapper> BaseColorPickEntity::pbo;
//auto_ptr<Pixmap2D> BaseColorPickEntity::cachedPixels;
map<string,bool> BaseColorPickEntity::usedColorIDList;
bool BaseColorPickEntity::trackColorUse = true;
vector<vector<unsigned char> > BaseColorPickEntity::nextColorIDReuseList;
bool BaseColorPickEntity::using_loop_method = false;
BaseColorPickEntity::BaseColorPickEntity() {
if(BaseColorPickEntity::bufferSizeRequired != -1) {
BaseColorPickEntity::init(BaseColorPickEntity::bufferSizeRequired);
}
uniqueColorID[0] = 0;
uniqueColorID[1] = 0;
uniqueColorID[2] = 0;
uniqueColorID[3] = 0;
assign_color();
}
bool BaseColorPickEntity::get_next_assign_color(unsigned char *assign_to) {
if(assign_to == NULL) {
throw megaglest_runtime_error("assign_to == NULL");
}
if(BaseColorPickEntity::using_loop_method == true) {
assign_color_using_loop(assign_to);
}
else {
assign_color_using_prime(assign_to);
}
bool isDuplicate = false;
if(BaseColorPickEntity::trackColorUse == true) {
string color_key = getColorDescription();
//printf("Assigned color [%s]\n",color_key.c_str());
if(usedColorIDList.find(color_key) == usedColorIDList.end()) {
usedColorIDList[color_key] = true;
//printf("Color added to used list [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
}
else {
isDuplicate = true;
printf("Line ref: %d *WARNING* color [%s] used count: %d using_loop: %d ALREADY in history list!\n",__LINE__,color_key.c_str(),(int)usedColorIDList.size(),BaseColorPickEntity::using_loop_method);
}
}
return isDuplicate;
}
void BaseColorPickEntity::assign_color() {
get_next_assign_color(&uniqueColorID[0]);
}
void BaseColorPickEntity::assign_color_using_prime(unsigned char *assign_to) {
nextColorRGB = (nextColorRGB * k) % p;
// nextColorID is a 16-bit (hi)colour (for players with 16-bit display depths)
// we expand it to true-color for use with OpenGL
const unsigned int
r = (nextColorRGB >> 11) & ((1<<5)-1),
g = (nextColorRGB >> 5) & ((1<<6)-1),
b = nextColorRGB & ((1<<5)-1);
assign_to[0] = r << 3;
assign_to[1] = g << 2;
assign_to[2] = b << 3;
}
void BaseColorPickEntity::assign_color_using_loop(unsigned char *assign_to) {
if(nextColorIDReuseList.empty() == false) {
//printf("Color being reused [%u.%u.%u] usedColorIDList = %d nextColorIDReuseList = %d!\n",nextColorIDReuseList.back()[0],nextColorIDReuseList.back()[1],nextColorIDReuseList.back()[2],(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
assign_to[0] = nextColorIDReuseList.back()[0];
assign_to[1] = nextColorIDReuseList.back()[1];
assign_to[2] = nextColorIDReuseList.back()[2];
nextColorIDReuseList.pop_back();
string color_key = getColorDescription();
if(usedColorIDList.find(color_key) == usedColorIDList.end()) {
//usedColorIDList[color_key] = true;
//printf("Color added to used list [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
}
else {
printf("Line ref: %d *WARNING* color [%s] ALREADY FOUND in history list!\n",__LINE__,color_key.c_str());
assign_color_using_loop(assign_to);
}
}
else {
assign_to[0] = nextColorID[0];
assign_to[1] = nextColorID[1];
assign_to[2] = nextColorID[2];
const int colorSpacing = 8;
if((int)(nextColorID[0] + colorSpacing) <= 255) {
nextColorID[0] += colorSpacing;
}
else {
nextColorID[0] = 1;
if((int)(nextColorID[1] + colorSpacing) <= 255) {
nextColorID[1] += colorSpacing;
}
else {
nextColorID[1] = 1;
if((int)(nextColorID[2] + colorSpacing) <= 255) {
nextColorID[2] += colorSpacing;
}
else {
printf("Color rolled over on 3rd level usedColorIDList = %d!\n",(int)usedColorIDList.size());
nextColorID[0] = 1;
nextColorID[1] = 1;
nextColorID[2] = 1;
// nextColorID[2] = 1;
// nextColorID[3]+=colorSpacing;
//
// if(nextColorID[3] > 255) {
// nextColorID[0] = 1;
// nextColorID[1] = 1;
// nextColorID[2] = 1;
// nextColorID[3] = 1;
// }
}
}
}
}
}
void BaseColorPickEntity::recycleUniqueColor() {
vector<unsigned char> reUseColor;
reUseColor.push_back(uniqueColorID[0]);
reUseColor.push_back(uniqueColorID[1]);
reUseColor.push_back(uniqueColorID[2]);
nextColorIDReuseList.push_back(reUseColor);
//printf("RECYCLE Color [%u.%u.%u] usedColorIDList = %d nextColorIDReuseList = %d!\n",reUseColor[0],reUseColor[1],reUseColor[2],(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
if(usedColorIDList.empty() == false) {
string color_key = getColorDescription();
usedColorIDList.erase(color_key);
//printf("REMOVING used Color [%s] usedColorIDList = %d nextColorIDReuseList = %d!\n",color_key.c_str(),(int)usedColorIDList.size(),(int)nextColorIDReuseList.size());
//printf("Line ref: %d *WARNING* color [%s] used count: %d NOT FOUND in history list!\n",__LINE__,color_key.c_str(),(int)usedColorIDList.size());
}
}
void BaseColorPickEntity::resetUniqueColors() {
BaseColorPickEntity::nextColorRGB = BaseColorPickEntity::k;
BaseColorPickEntity::nextColorID[0] = 1;
BaseColorPickEntity::nextColorID[1] = 1;
BaseColorPickEntity::nextColorID[2] = 1;
usedColorIDList.clear();
nextColorIDReuseList.clear();
}
void BaseColorPickEntity::init(int bufferSize) {
if(BaseColorPickEntity::pbo.get() == NULL) {
//printf("BaseColorPickEntity::init pbo == null\n");
BaseColorPickEntity::bufferSizeRequired = bufferSize;
BaseColorPickEntity::pbo.reset(new PixelBufferWrapper(2,BaseColorPickEntity::bufferSizeRequired));
}
else if(bufferSize != BaseColorPickEntity::bufferSizeRequired) {
//printf("BaseColorPickEntity::init pbo resize\n");
cleanupPBO();
BaseColorPickEntity::bufferSizeRequired = bufferSize;
BaseColorPickEntity::pbo.reset(new PixelBufferWrapper(2,BaseColorPickEntity::bufferSizeRequired));
}
}
void BaseColorPickEntity::cleanupPBO() {
BaseColorPickEntity::pbo.reset(0);
}
string BaseColorPickEntity::getColorDescription() const {
char szBuf[100]="";
snprintf(szBuf,100,"%d.%d.%d",uniqueColorID[0],uniqueColorID[1],uniqueColorID[2]);
string result = szBuf;
return result;
}
void BaseColorPickEntity::beginPicking() {
// turn off texturing, lighting and fog
//glClearColor (0.0,0.0,0.0,0.0);
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//reset current background. This is neeeded to get a proper black background!
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_COLOR_BUFFER_BIT);
glPushAttrib(GL_ENABLE_BIT);
//glEnable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
glDisable(GL_FOG);
glDisable(GL_LIGHTING);
glDisable(GL_BLEND);
glDisable(GL_MULTISAMPLE);
glDisable(GL_DITHER);
glDisable(GL_POLYGON_OFFSET_FILL);
glDisable(GL_NORMALIZE);
// all off, but we want depth test
glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//glPushAttrib(GL_TEXTURE_2D | GL_LIGHTING | GL_BLEND | GL_MULTISAMPLE | GL_DITHER);
//glPushAttrib(GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT | GL_CURRENT_BIT | GL_TEXTURE_BIT | GL_NORMALIZE | GL_BLEND | GL_POLYGON_OFFSET_FILL);
}
void BaseColorPickEntity::endPicking() {
// turn off texturing, lighting and fog
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_FOG);
//glEnable(GL_LIGHTING);
//glEnable(GL_BLEND);
//glEnable(GL_MULTISAMPLE);
//glEnable(GL_DITHER);
glPopAttrib();
}
vector<int> BaseColorPickEntity::getPickedList(int x,int y,int w,int h,
const vector<BaseColorPickEntity *> &rendererModels) {
vector<int> pickedModels;
pickedModels.reserve(rendererModels.size());
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
static auto_ptr<Pixmap2D> cachedPixels;
//auto_ptr<Pixmap2D> cachedPixels;
//printf("PixelBufferWrapper::getIsPBOEnable() = %d\n",PixelBufferWrapper::getIsPBOEnable());
if(rendererModels.empty() == false) {
if(PixelBufferWrapper::getIsPBOEnable() == true) {
Pixmap2D *pixmapScreenShot = BaseColorPickEntity::pbo->getPixelBufferFor(x,y,w,h, COLOR_COMPONENTS);
//pixmapScreenShot->saveTga("/tmp/toll.tga"); //### for debugging
cachedPixels.reset(pixmapScreenShot);
}
else {
Pixmap2D *pixmapScreenShot = new Pixmap2D(w, h, COLOR_COMPONENTS);
//glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixmapScreenShot->getPixels());
//pixmapScreenShot->saveTga("/tmp/toll.tga");
cachedPixels.reset(pixmapScreenShot);
//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}
unsigned char *pixelBuffer = cachedPixels->getPixels();
map<int,bool> modelAlreadyPickedList;
map<unsigned char,map<unsigned char, map<unsigned char,bool> > > colorAlreadyPickedList;
int skipSteps=4;
//unsigned char *oldpixel = &pixelBuffer[0];
// now we check the screenshot if we find pixels in color of unit identity
// to speedup we only check every "skipSteps" line and pixel in a row if we find such a color.
// this is exact enough for MG purpose
for(int hh = 0; hh < h && pickedModels.size() < rendererModels.size(); hh=hh+skipSteps) {
for(int ww=0;ww < w && pickedModels.size() < rendererModels.size(); ww=ww+skipSteps){
int index = (hh*w+ww) * COLOR_COMPONENTS;
unsigned char *pixel = &pixelBuffer[index];
//printf("pixel[0]=%d pixel[1]=%d pixel[2]=%d\n",pixel[0],pixel[1],pixel[2]);
if(pixel[0]==0 && pixel[1]==0 && pixel[2]==0)
{
continue;
}
// if(index>0)
// {
// oldpixel = &pixelBuffer[index-1*COLOR_COMPONENTS];
// if(memcmp(pixel,oldpixel,3)) continue;
// }
// Skip duplicate scanned colors
map<unsigned char,map<unsigned char, map<unsigned char,bool> > >::const_iterator iterFind1 = colorAlreadyPickedList.find(pixel[0]);
if(iterFind1 != colorAlreadyPickedList.end()) {
map<unsigned char, map<unsigned char,bool> >::const_iterator iterFind2 = iterFind1->second.find(pixel[1]);
if(iterFind2 != iterFind1->second.end()) {
map<unsigned char,bool>::const_iterator iterFind3 = iterFind2->second.find(pixel[2]);
if(iterFind3 != iterFind2->second.end()) {
continue;
}
}
}
for(unsigned int i = 0; i < rendererModels.size(); ++i) {
// Skip models already selected
if(modelAlreadyPickedList.find(i) != modelAlreadyPickedList.end()) {
continue;
}
const BaseColorPickEntity *model = rendererModels[i];
if( model != NULL && model->isUniquePickingColor(pixel) == true) {
//printf("Found match pixel [%d.%d.%d] for model [%s] ptr [%p][%s]\n",pixel[0],pixel[1],pixel[2],model->getColorDescription().c_str(), model,model->getUniquePickName().c_str());
pickedModels.push_back(i);
modelAlreadyPickedList[i]=true;
colorAlreadyPickedList[pixel[0]][pixel[1]][pixel[2]]=true;
break;
}
}
}
}
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
//delete pixmapScreenShot;
}
//printf("In [%s::%s] Line: %d\n",extractFileFromDirectoryPath(__FILE__).c_str(),__FUNCTION__,__LINE__);
return pickedModels;
}
bool BaseColorPickEntity::isUniquePickingColor(unsigned char *pixel) const {
bool result = false;
if( uniqueColorID[0] == pixel[0] &&
uniqueColorID[1] == pixel[1] &&
uniqueColorID[2] == pixel[2]) {
//uniqueColorID[3] == pixel[3]) {
result = true;
}
return result;
}
void BaseColorPickEntity::setUniquePickingColor() const {
glColor3ub(uniqueColorID[0],
uniqueColorID[1],
uniqueColorID[2]);
/*
glColor3f( uniqueColorID[0] / 255.0f,
uniqueColorID[1] / 255.0f,
uniqueColorID[2] / 255.0f);
//uniqueColorID[3] / 255.0f);
*
*/
}
}}//end namespace